解题思路:先把方程化为一般式得到(b+c)x2-2ax-(b-c)=0,再根据判别式的意义得到△=4a2-4(b+c)•[-(b-c)]=0,整理得a2+b2=c2,然后根据勾股定理的逆定理判断三角形形状.
方程整理得(b+c)x2-2ax-(b-c)=0,
∵方程b(x2-1)-2ax+c(x2+1)=0有两个相等的实数根,
∴△=4a2-4(b+c)•[-(b-c)]=0,
∴a2+b2=c2,
∴三角形为直角三角形.
点评:
本题考点: 根的判别式;勾股定理的逆定理.
考点点评: 本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了勾股定理的逆定理.