已知函数f(x)的定义域为R,且f(a+b)=f(a)·f(b),当x>0时,f(x)>1,(1)求f(0) (2)证明

1个回答

  • (1)由于f(a+b)=f(a)×f(b),则f(0+X)=f(0)×f(X)

    当X>0时,有f(x)>1,所以f(0)=1

    (2)f(a+b)=f(a)×f(b)则,f(2x)=f(x)×f(x),则对任意x,f(x)>0

    又有f(x-x)=f(x)×f(-x)=1,当x>0时,f(x)>1,则f(-x)x1

    f(x2)-f(x1)=f[(x2-x1)/2+(x2+x1)/2]-f[(x1-x2)/2+(x1+x2)/2]

    =f[(x2-x1)/2]×f[(x2+x1)/2]-f[(x1-x2)/2]×f[(x1+x2)/2]

    =f[(x2+x1)/2]{f[(x2-x1)/2]-f[(x1-x2)/2]}

    由于(x2-x1)/2>0,(x1-x2)/21,f[(x1-x2)/2]0,则函数f(x)为增函数