y=√[(1-x^3)/(1+x^3)]
两边取自然对数得:
lny=1/2[ln(1-x^3)-ln(1+x^3)]
两边同时对x取导得:
y '/y=1/2·1/(1-x^3)^2·(1-x^3) '-1/2·1/(1+x^3)^2·(1+x^3) '
y '/y=(-3x^2)/[2(1-x^3)^2]-(3x^2)/[2(1+x^3)^2]
把y=√[(1-x^3)/(1+x^3)]代入上式得
y '=√[(1-x^3)/(1+x^3)]·{(-3x^2)/[2(1-x^3)^2]-(3x^2)/[2(1+x^3)^2]}