如果f(x)是(a,b)上的连续函数,那么f(x)一定存在原函数
可以定义F(x)=int_c^x f(t)dt,其中c是(a,b)中给定的一点,积分按照Riemann积分的意义
那么可以证明F'(x)=f(x)
至于连续函数未必可导,这个没什么好解释的了吧,甚至可以处处不可导
另外,楼上有严重错误,特别要注意若f(x)在某点x=c可导不能推出f(x)在c点的某个邻域内连续,只能说f(x)在c点连续
如果f(x)是(a,b)上的连续函数,那么f(x)一定存在原函数
可以定义F(x)=int_c^x f(t)dt,其中c是(a,b)中给定的一点,积分按照Riemann积分的意义
那么可以证明F'(x)=f(x)
至于连续函数未必可导,这个没什么好解释的了吧,甚至可以处处不可导
另外,楼上有严重错误,特别要注意若f(x)在某点x=c可导不能推出f(x)在c点的某个邻域内连续,只能说f(x)在c点连续