计算对坐标面的曲面积分∫∫z²dxdy,其中∑为上半球面z=√a²–x²–y²被
1个回答
欢迎采纳,不要点错答案哦╮(╯◇╰)╭
欢迎采纳,不要点错答案哦╮(╯◇╰)╭
相关问题
计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,∑是上半球面z=根下1-x^2-y^2的上侧
计算曲面积分ff(xdydz+z平方dxdy)/x2+y2+z2,其中积分区域为曲面x2+y2=a2与平面z=a及z=-
关于曲面积分计算曲面积分∫∫(y^2+2z)dydz+(3z^2-x)dzdx+(x^2-y)dxdy,其中积分区域为锥
第二型曲面积分的计算计算曲面积分∫∫x2dudz加y2dxdz加z2dxdy,其中∑是球面x2+y2+z2=1的上半平面
计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,其中积分区域为,x^2+y^2+z^2=1的外侧.
计算曲面积分∫∫D(e^z)/√(x^2+y^2)dxdy,其中D为由z=√(x^2+y^2),x^2+y^2=4及z=
利用高斯公式计算曲面积分I=∫∫(∑)xdydz+ydzdx+zdxdy ,其中∑为半球面z=√(R^2-x^2-y^2
对坐标的曲面积分∫∫(xz)dxdy其中是平面x=0,y=0,z=0,x+y+z=1所围成的空间区域的整个边界曲面的外侧
高数曲面积分计算求∫∫dydz+∫∫dzdx+∫∫dxdy积分区域是z=√(1-x²-y²)的上侧
求曲面积分xyzdxdy,其中积分区域为球面x^2+y^2+z^2=1的外侧.