裂项求和
an=1/2×[1/n - 2/(n+1) +1/(n+2)]
Sn=1/2{(1/1 -2/2 + 1/3)+(1/2 - 2/3 +1/4)+...+ [1/n - 2/(n+1) +1/(n+2)]}
=1/2[1/1 -1/2 - 1/(n+1) +1/(n+2)]
=1/4-1/[2×(n+1)(n+2)]
limSn=lim[1/4-1/(2×(n+1)(n+2))] =1/4.
裂项求和
an=1/2×[1/n - 2/(n+1) +1/(n+2)]
Sn=1/2{(1/1 -2/2 + 1/3)+(1/2 - 2/3 +1/4)+...+ [1/n - 2/(n+1) +1/(n+2)]}
=1/2[1/1 -1/2 - 1/(n+1) +1/(n+2)]
=1/4-1/[2×(n+1)(n+2)]
limSn=lim[1/4-1/(2×(n+1)(n+2))] =1/4.