(1)∵等差数列{a n}的公差d>0,a 2、a 5且是方程x 2-12x+27=0的两根,
∴a 2=3,a 5=9.
∴d=
9-3
5-2 =2,
∴a n=a 2+(n-2)d=3+2(n-2)=2n-1;
又数列{b n}中,T n=1-
1
2 b n,①
∴T n+1=1-
1
2 b n+1,②
②-①得:
b n+1
b n =
1
3 ,又T 1=1-
1
2 b 1=b 1,
∴b 1=
2
3 ,
∴数列{b n}是以
2
3 为首项,
1
3 为公比的等比数列,
∴b n=
2
3 • (
1
3 ) n-1 ;
综上所述,a n=2n-1,b n=
2
3 • (
1
3 ) n-1 ;
(2)∵c n=a n•b n=(2n-1)•
2
3 • (
1
3 ) n-1 ,
∴S n=a 1b 1+a 2b 2+…+a nb n
=1×
2
3 +3×
2
3 ×
1
3 +…+(2n-1)×
2
3 × (
1
3 ) n-1 ,③
∴
1
3 S n=
2
3 ×
1
3 +3×
2
3 × (
1
3 ) 2 +…+(2n-3)×
2
3 × (
1
3 ) n-1 +(2n-1)×
2
3 × (
1
3 ) n ,④
∴③-④得:
2
3 S n=
2
3 +
4
3 [
1
3 + (
1
3 ) 2 + (
1
3 ) 3 +…+ (
1
3 ) n-1 ]-(2n-1)×
2
3 × (
1
3 ) n ,
S n=1+2[
1
3 + (
1
3 ) 2 + (
1
3 ) 3 +…+ (
1
3 ) n-1 ]-(2n-1)× (
1
3 ) n
=1+2×
1
3 [1- (
1
3 ) n-1 ]
1-
1
3 -(2n-1)× (
1
3 ) n
=2-
2n+2
3 × (
1
3 ) n-1
=2-(2n+2)× (
1
3 ) n .