数列{a n }是公差为正数的等差数列,a 2 、a 5 且是方程x 2 -12x+27=0的两根,数列{b n }的前

1个回答

  • (1)∵等差数列{a n}的公差d>0,a 2、a 5且是方程x 2-12x+27=0的两根,

    ∴a 2=3,a 5=9.

    ∴d=

    9-3

    5-2 =2,

    ∴a n=a 2+(n-2)d=3+2(n-2)=2n-1;

    又数列{b n}中,T n=1-

    1

    2 b n,①

    ∴T n+1=1-

    1

    2 b n+1,②

    ②-①得:

    b n+1

    b n =

    1

    3 ,又T 1=1-

    1

    2 b 1=b 1

    ∴b 1=

    2

    3 ,

    ∴数列{b n}是以

    2

    3 为首项,

    1

    3 为公比的等比数列,

    ∴b n=

    2

    3 • (

    1

    3 ) n-1 ;

    综上所述,a n=2n-1,b n=

    2

    3 • (

    1

    3 ) n-1 ;

    (2)∵c n=a n•b n=(2n-1)•

    2

    3 • (

    1

    3 ) n-1 ,

    ∴S n=a 1b 1+a 2b 2+…+a nb n

    =1×

    2

    3 +3×

    2

    3 ×

    1

    3 +…+(2n-1)×

    2

    3 × (

    1

    3 ) n-1 ,③

    1

    3 S n=

    2

    3 ×

    1

    3 +3×

    2

    3 × (

    1

    3 ) 2 +…+(2n-3)×

    2

    3 × (

    1

    3 ) n-1 +(2n-1)×

    2

    3 × (

    1

    3 ) n ,④

    ∴③-④得:

    2

    3 S n=

    2

    3 +

    4

    3 [

    1

    3 + (

    1

    3 ) 2 + (

    1

    3 ) 3 +…+ (

    1

    3 ) n-1 ]-(2n-1)×

    2

    3 × (

    1

    3 ) n ,

    S n=1+2[

    1

    3 + (

    1

    3 ) 2 + (

    1

    3 ) 3 +…+ (

    1

    3 ) n-1 ]-(2n-1)× (

    1

    3 ) n

    =1+2×

    1

    3 [1- (

    1

    3 ) n-1 ]

    1-

    1

    3 -(2n-1)× (

    1

    3 ) n

    =2-

    2n+2

    3 × (

    1

    3 ) n-1

    =2-(2n+2)× (

    1

    3 ) n .