某个七位数1993□□□能同时被2,3,4,5,6,7,8,9整除,那么,它的后三位数是______.

2个回答

  • 解题思路:先求出2、3、4、5、6、7、8、9的最小公倍数是2520,1993000÷2520=790…2200,又因为2520-2200=320,所以可得这个七位数是1993320.

    因为2、3、4、5、6、7、8、9的最小公倍数是2520,

    1993000÷2520=790…2200,

    又因为2520-2200=320,

    所以可得这个七位数是1993320,所以这个七位数的后三位数字是320.

    故答案为:320.

    点评:

    本题考点: 数的整除特征.

    考点点评: 解答此类问题的关键把七位数的后三位用0代替求出余数,通过计算它们的最小公倍数,将后三位数将余数补足即可.