解题思路:(1)根据矩形的性质,平行线的性质,折叠的性质和等角对等边即可证明;
(2)先证明四边形MBND是平行四边形,再根据有一组邻边相等的四边形是菱形求解即可;
(3)作A′H⊥BC于H,连接MA′,MC.先根据勾股定理得到x的值,再根据S△MA′C=S四边形MBA′C-S△MBA′列式计算即可求解.
(1)证明:∵AD∥BC,
∴∠CBD=∠MDB,
∵∠MBD=∠CBD,
∴∠MBD=∠MDB,
∴MB=MD;
(2)菱形.理由如下
同理可知BN=ND,
∴∠NBD=∠NDB,
∵∠MBD=∠DBN,
∴∠MBD=∠BDN,
∴BM∥ND,
∵MD∥BN,
∴四边形MBND是平行四边形,
∵MB=MD,
∴四边形MBND是菱形;
(3)作A′H⊥BC于H,连接MA′,MC,
设NC=NA′=x
在RT△BA′N中BA′=6,A′N=x,BN=8-x
∴62+x2=(8-x)2,
∴x=[7/4],
∵BA′•A′N=A′H•BN
∴A′H=[42/25]
∴S△MA′C=S四边形MBA′C-S△MBA′
=[1/2]×8×6+[1/2]×8×[7/4]-[1/2]×6×[25/4]
=[49/4].
点评:
本题考点: 矩形的性质;翻折变换(折叠问题).
考点点评: 考查了矩形的性质,翻折变换(折叠问题),涉及的知识点有:矩形的性质,平行线的性质,折叠的性质,等角对等边,平行四边形的判定,菱形的判定,勾股定理,三角形的面积计算,综合性较强,有一定的难度.