过D作DH垂直于CG,则有DH=CH=BH,因为D是AC中点,且三角形ABC为等腰直角三角形.又因为G为DE中点,根据边角边原理证明三角形DGH全等于三角形EGB,可得DH=BE=BH=2BG=2GH.三角形CDG的面积A1=1/2*DH*CG=9.带入上述等式关系,有1/2*2BG*(GH+CH)=BG*3BG=3*BG^2=9. 故BG ^2=3.
那么三角形DEF的面积A2=1/2*DE*DF=2*GE^2=2*(BG^2+BE^2)=2*5*BG^2=30.选B
过D作DH垂直于CG,则有DH=CH=BH,因为D是AC中点,且三角形ABC为等腰直角三角形.又因为G为DE中点,根据边角边原理证明三角形DGH全等于三角形EGB,可得DH=BE=BH=2BG=2GH.三角形CDG的面积A1=1/2*DH*CG=9.带入上述等式关系,有1/2*2BG*(GH+CH)=BG*3BG=3*BG^2=9. 故BG ^2=3.
那么三角形DEF的面积A2=1/2*DE*DF=2*GE^2=2*(BG^2+BE^2)=2*5*BG^2=30.选B