求极限 lim【1/(n^2+n+1)+2/(n^2+n+2)+3/(n^2+n+3)+……+n/(n^2+n+n)】n
1个回答
答案是1/2
使用夹逼法.
分母都换成n^2+n+1求出极限为1/2
分母都换成n^2+n+n求出极限也为1/2
根据夹逼准则 得出极限为1/2
相关问题
求极限:lim(1/n+2^2/n^2+3^2/n^3+...+n^2/n^n) n→∞
求下列极限:(1)lim 3n^2-2n+1/8-n^3 n→∞ (2)lim 1+2+3+…+n/n^2 n→∞
求极限lim [ 2^(n+1)+3^(n+1)]/2^n+3^n (n→∞)
lim(n→∞)√(3^n)/(n*2^n)和lim(n→∞)√(n^2)/(3^n)求极限,
求下列极限~(大一级别)1.lim(n→∞)3n^2+n+1/n^3+4n^2-12.lim(n→∞)(1/n^2+2/
lim n →∞ (1^n+3^n+2^n)^1/n,求数列极限
求极限lim1/n2(√n+√2n+…√n2﹚
求极限lim(1+2^n+3^n)^1/n.n-->无穷.
求下列极限 lim n→正无穷(n^2/1+n^2/2.+n^2/n-1) lim n→正无穷[1*2/1+2*3/1+
求极限Xn=n/(n^2+1)+n/(n^2+2)+n/(n^2+3)+……+n/(n^2+n),