(1)由韦达定理得αβ=1/an,α+β=a(n+1)/an,又6α-2αβ+6β=3,∴6a(n+1)-2=3an.
∴a(n+1)=(an/2)+(1/3)
(2)由a(n+1)=(an/2)+(1/3)得2[a(n+1)-(2/3)]=an-(2/3),故{an-2/3}是公比为1/2的等比数列
(3)a1=7/6,∴a1-2/3=1/2
∴an-2/3=1/2*(1/2)^(n-1)=(1/2)^n ,故an=2/3+(1/2)^n
(1)由韦达定理得αβ=1/an,α+β=a(n+1)/an,又6α-2αβ+6β=3,∴6a(n+1)-2=3an.
∴a(n+1)=(an/2)+(1/3)
(2)由a(n+1)=(an/2)+(1/3)得2[a(n+1)-(2/3)]=an-(2/3),故{an-2/3}是公比为1/2的等比数列
(3)a1=7/6,∴a1-2/3=1/2
∴an-2/3=1/2*(1/2)^(n-1)=(1/2)^n ,故an=2/3+(1/2)^n