a+b+c=1,(1)
a^2+b^2+c^2=2,(2)
a^3+b^3+c^3=3(3)
由(1),所以a^2+b^2+c^2+2ab+2bc+2ca=1
再根据(2),所以a^2+b^2+c^2-ab-bc-ca=5/2
又根据a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=5/2
得:3-3abc=5/2
所以abc=1/6
a+b+c=1,(1)
a^2+b^2+c^2=2,(2)
a^3+b^3+c^3=3(3)
由(1),所以a^2+b^2+c^2+2ab+2bc+2ca=1
再根据(2),所以a^2+b^2+c^2-ab-bc-ca=5/2
又根据a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=5/2
得:3-3abc=5/2
所以abc=1/6