f(x)=2sinωxcosωx-2√3cos^2ωx+1+√3
=sin2ωx-√3cos2ωx+1
=2sin(2ωx-π/3)+1
因为f(x)的最小正周期是π,所以2π/2ω=ω,即ω=1,
f(x)=2sin(2x-π/3)+1.
当2x-π/3=π/2+2kπ,k∈Z时,sin(2x-π/3)=1最大,
故当x=5π/12+kπ,k∈Z时,f(x)取得最大值3.
f(x)=2sinωxcosωx-2√3cos^2ωx+1+√3
=sin2ωx-√3cos2ωx+1
=2sin(2ωx-π/3)+1
因为f(x)的最小正周期是π,所以2π/2ω=ω,即ω=1,
f(x)=2sin(2x-π/3)+1.
当2x-π/3=π/2+2kπ,k∈Z时,sin(2x-π/3)=1最大,
故当x=5π/12+kπ,k∈Z时,f(x)取得最大值3.