因为A+B+C=180度
2B=A+C
所以B=60度 A+C=120度
因为2/b=(1/a)+(1/c)
所以ac=(a+c)b/2
由余弦定理得b^2=a^2+c^2-2ac(cosB)
=a^2+c^2-ac
=(a+c)^2-3ac
所以有:b^2=(a+c)^2-3(a+c)b/2
整理得:(a+c)^2-(3b/2)(a+c)-b^2=0
分解因式得:(a+c-2b)(a+c+b/2)=0
因为a>0 b>0 c>0
所以a+c+b/2>0
所以a+c-2b=0
所以a+c=2b
因为ac=(a+c)b/2=((a+c)^2)/4
所以(a-c)^2=0
a=c
所以a=b=c
即三角形ABC为正三角形.
A=B=C=60度