x^4-4x^3+10x^2-12x+9
=(x^4-4x^3+6x^2-4x+1)+(4x^2-8x+4)+4
=(x-1)^4+4(x-1)^2+4
因为(x-1)^2≥0
所以(x-1)^2+2≥2
所以[(x-1)^2+2]^2≥4
X^4-4X^3+10X^2-12X+9的最小值是4
x^4-4x^3+10x^2-12x+9
=(x^4-4x^3+6x^2-4x+1)+(4x^2-8x+4)+4
=(x-1)^4+4(x-1)^2+4
因为(x-1)^2≥0
所以(x-1)^2+2≥2
所以[(x-1)^2+2]^2≥4
X^4-4X^3+10X^2-12X+9的最小值是4