(1) OAn向量= (n-1) i向量 + (n) j向量
OBn向量= 9-9*(2/3)^n i向量
(2) 写出4个点的坐标
An ( n-1, n )
An+1 ( n, n+1 )
Bn ( 9-9*(2/3)^n, 0 )
Bn+1 ( 9-9*(2/3)^(n+1), 0 )
A1 ( 0, 1 )
O ( 0, 0 )
面积AnBnBn+1An+1
= 面积OA1An+1Bn+1 - 面积OA1AnBn
= (三角形面积OA1An+1 + 三角形面积OAn+1Bn+1)
- (三角形面积OA1An + 三角形面积OAnBn )
=( n/2 + (n+1)(9-9*(2/3)^(n+1))/2 )
- ( (n-1)/2 + (n)(9-9*(2/3)^n)/2 )
= 1/2 + (9/2) + (3n/2-3)*(2/3)^n
= 5 + (n-2)*(2/3)^(n-1)
所以,an = 5 + (n-2)*(2/3)^(n-1)
(3) an = 5 + (n-2)*(2/3)^(n-1)
a1 = 4
a2 = 5
a3 = 5 + 4/9
a4 = 5 + 16/27
a5 = 5 + 16/27
a6 = 5 + 128/243
猜测:数组an的最大值为(5+16/27)
即M=5+16/27=151/27
证明可用数学归纳法来求得,
证明铺垫,a1,a2,a3,a4,a5满足猜想
证明假设,ak