解2a+b=2(1,k)+(1,-1)=(3,2k-1)
a-b=(1,k)-(1,-1)=(0,k+1)
由2a+b与a-b的夹角为锐角
则(2a+b)*(a-b)>0
即(3,2k-1)*(0,k+1)
=3*0+(2k-1)(k+1)
=2k²+k-1
=(2k-1)*(k+1)>0
即k>1/2或k<-1
解2a+b=2(1,k)+(1,-1)=(3,2k-1)
a-b=(1,k)-(1,-1)=(0,k+1)
由2a+b与a-b的夹角为锐角
则(2a+b)*(a-b)>0
即(3,2k-1)*(0,k+1)
=3*0+(2k-1)(k+1)
=2k²+k-1
=(2k-1)*(k+1)>0
即k>1/2或k<-1