Sn = 2n-an
n=1,a1= 1
an = Sn -S(n-1)
= 2-an +a(n-1)
an - 2 = (1/2)[a(n-1) -2 ]
{an -2} 是等比数列,q=1/2
an -2 = (1/2)^(n-1) .(a1-2)
an = 2-(1/2)^(n-1)
bn= 2^(n-1).an
=2^n -1
consider
for n>=3
1/(2^n-1) < (2/3) (1/2)^(n-1)
1/b1+1/b2+...+1/bn
=1/b1+1/b2+(1/b3+...+1/bn)
=1+1/3+[1/(2^3-1) +...+1/(2^n-1) ]
< 4/3 + (2/3)[ 1/2^2+...+1/2^(n-1) ]
=4/3 + (1/3)( 1- 1/2^(n-3) )