公式:
sin(2α)=2sinα·cosα
sin^2(α)+cos^2(α)=1
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
原式
=sin9/cos9 -sin27/cos27-cos27/sin27+cos9/sin9
=(sin9^2+cos9^2)/sin9cos9-(sin27^2+cos27^2)/sin27cos27
=2/sin18-2/sin54
=2(sin54-sin18)/sin54sin18
={2*2cos[(54+18)/2]sin[(54-18)/2]}/sin54sin18
=4cos36sin18/sin54sin18
=4