证明: 连接CE,CH ∵正方形ABCD ∴CE2=BE2+BC2 ∵EF‖AD, 且G为FD的中点, ∴G为EH的中点, ∴DH=EF 又正方形ABCD,BD为对角线, ∴∠EBF=45? ∴EF=EB ∴EB=DH RT△CDH中 CH2=DH2+CD2 又∵CE2=BE2+BC2 DH=BE,CD=BC ∴CH=CE 在△CGE和△CGH中 CE=CH,CG=CG,GE=GH ∴△CGE≌△CGH(sss) ∴∠CGE=∠CGH 又∠CGE+∠CGH=180? ∴∠CGE=90? ∴EG⊥CG
正方形ABCD中,E是AB上一点,EF⊥AB交BD于F,G为FD中点.连接EG并延长交AD延长线于H,连接CG,证明EG
1个回答
相关问题
-
正方形ABCD中,E是AB上一点,EF⊥AB交BD于F,G为FD中点.连接EG并延长交AD延长线于H,连接CG,证明EG
-
正方形ABCD中,E是AB上一点,EF⊥AB交BD于F,G为FD中点.连接EG并延长交AD延长线于H,连接CG,证明EG
-
1.正方形ABCD,E为BD上一点,连接AE并延长交CD于点F,交BC延长线于G,求证AE²=EF×EG
-
在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG,CG,如图(1)易证EG=CG
-
已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG. (1
-
已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.求证:
-
已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.求证:
-
已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.求证:
-
已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.求证:
-
1.已知正方形ABCD中,E为对角线BD上一点,过E做EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG,求证