解题思路:(1)设圆心坐标为(m,2m-6)则利用圆过点1,2)、(4,-1),求出m即可;
(2)设P,R的坐标,利用直线和圆相切,建立方程关系,进行判断.
(1)∵圆M的圆心在直线2x-y-6=0上,且过点(1,2)、(4,-1).
∴设圆心坐标为(m,2m-6),半径为r,
则圆的标准范围为(x-m)2+(y-2m+6)2=r2;
则(1-m)2+(2-2m+6)2=r2且(4-m)2+(-1-2m+6)2=r2;
即(m-1)2+(8-2m)2=r2且(m-4)2+(5-2m)2=r2;
解得m=4,r=3,
∴圆M:(x-4)2+(y-2)2=9.
(2)设P(x,y),R(a,b),
则(x-4)2+(y-2)2=9,
即x2+y2=8x+4y-11,
又PQ2=x2+y2-1,PR2=(x-a)2+(y-b)2=x2+y2-2ax-2by+a2+b2,
故PQ2=8x+4y-12,
PR2=(8-2a)x+(4-2b)y+a2+b2-11,
又设[PQ/PR=t为定值,
故8x+4y-12=t2[(8-2a)x+(4-2b)y+a2+b2-11],
可得
8=(8−2a)t2
4=(4−2b)t2
−12=(a2+b2−11)t2],
解得
a1=2
b1=1
t1=
2或
a2=
2
5
b2=
1
5
t2=
10
3,
综上,存在点R(2,1)或(
2
5 ,
1
5)满足题意.
点评:
本题考点: 直线与圆的位置关系.
考点点评: 本题主要考查利用待定系数法求圆的方程,以及直线与圆的位置关系应用,考查学生的运算能力.