设BC=6a,则BD=DE=EC=2a,作FM ∥ BC交AE于点M,
∵F是AC的中点,
∴MF=
1
2 EC=a,
∵FM ∥ BC,
∴△BEH ∽ △FMH,
∴
HF
BH =
MF
BE =
a
4a =
1
4 ,则HF=
1
5 BF,
作DN ∥ AC交BF于点N,设AC=2b,则AF=CF=b,
∴△BDN ∽ △BCF,
∴
BD
BC =
ND
CF =
BN
BF =
2a
6a =
1
3 ,
∴DN=
1
3 CF=
1
3 b,BN=
1
3 BF,
∵DN ∥ AC,
∴△DNG ∽ △AFG,
∴
NG
GF =
DN
AF =
1
3 b
b =
1
3 ,
∴NG=
1
3 GF,即NG=
1
4 NF=
1
4 (BF-BN)=
1
4 (BF-
1
3 BF)=
1
6 BF,
∴BG=
1
3 GF+
1
6 GF=
1
2 BF,
∴GM=BF-BG-HF=BF-
1
2 BF-
1
5 BF=
3
10 BF,
∴BG:GH:HF=
1
2 BF:
3
10 BF:
1
5 BF=5:3:2.
故选C.
1年前
4