如图,△ABC中,E、D是BC边上的三等分点,F是AC的中点,BF交AD、AE于G、F,则BG:GH:HF等于(  )

1个回答

  • 设BC=6a,则BD=DE=EC=2a,作FM ∥ BC交AE于点M,

    ∵F是AC的中点,

    ∴MF=

    1

    2 EC=a,

    ∵FM ∥ BC,

    ∴△BEH ∽ △FMH,

    HF

    BH =

    MF

    BE =

    a

    4a =

    1

    4 ,则HF=

    1

    5 BF,

    作DN ∥ AC交BF于点N,设AC=2b,则AF=CF=b,

    ∴△BDN ∽ △BCF,

    BD

    BC =

    ND

    CF =

    BN

    BF =

    2a

    6a =

    1

    3 ,

    ∴DN=

    1

    3 CF=

    1

    3 b,BN=

    1

    3 BF,

    ∵DN ∥ AC,

    ∴△DNG ∽ △AFG,

    NG

    GF =

    DN

    AF =

    1

    3 b

    b =

    1

    3 ,

    ∴NG=

    1

    3 GF,即NG=

    1

    4 NF=

    1

    4 (BF-BN)=

    1

    4 (BF-

    1

    3 BF)=

    1

    6 BF,

    ∴BG=

    1

    3 GF+

    1

    6 GF=

    1

    2 BF,

    ∴GM=BF-BG-HF=BF-

    1

    2 BF-

    1

    5 BF=

    3

    10 BF,

    ∴BG:GH:HF=

    1

    2 BF:

    3

    10 BF:

    1

    5 BF=5:3:2.

    故选C.

    1年前

    4