化简[1-cos^4(A)-sin^4(A)]/[1-cos^6(A)-sin^6(A)] 等于多少?

3个回答

  • [1-cos^4(A)-sin^4(A)]/[1-cos^6(A)-sin^6(A)]

    =[1-cos^4 A-sin^4 A-2cos^2 A*sin^2 A+2cos^2 A*sin^2 A]/[1-(cos^2 A+sin^2 A)(cos^4 A-cos^2 A*sin^2 A+sin^4 A)]

    =[1+2cos^2 A*sin^2 A-(cos^2 A+sin^2 A)]/[1-(cos^4 A-cos^2 A*sin^2 A+sin^4 A)]

    =[1+2cos^2 A*sin^2 A-1]/[1-(cos^4 A+2cos^2 A*sin^2 A+sin^4 A)+3cos^2 A*sin^2 A]

    =[2cos^2 A*sin^2 A]/[1-(cos^2 A+sin^2)^2+3cos^2 A*sin^2 A]

    =[2cos^2 A*sin^2 A]/[1-1+3cos^2 A*sin^2 A]

    =[2cos^2 A*sin^2 A]/(3cos^2 A*sin^2 A)

    =2/3