如果直接用坐标曲线积分去做会很麻烦.由于锥面(∑)上的点都在所求函数定义域内,所以考虑用高斯公式:令P=y^2+2z Q=3z^2-x R=x^2-y 补充一个平面z=2 设为∑1 取其上侧则所求可化为在 ∑和∑1上的积分(∑+∑1)∫∫...
关于曲面积分计算曲面积分∫∫(y^2+2z)dydz+(3z^2-x)dzdx+(x^2-y)dxdy,其中积分区域为锥
2个回答
相关问题
-
计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,其中积分区域为,x^2+y^2+z^2=1的外侧.
-
求积分∫∫(x^2+zx)dydz+(y^2+xy)dzdx+(z^2+yz)dxdy,其中积分沿曲面外侧,x^2+y^
-
曲面积分 ∫∫(y^2-x)dydz+(z^2-y)dzdx+(x^2-z)dxdy,∑为Z=1-x^2-y^2位于侧面
-
高数曲面积分计算求∫∫dydz+∫∫dzdx+∫∫dxdy积分区域是z=√(1-x²-y²)的上侧
-
曲面积分 ∫∫(2x+z)dydz+zdxdy 积分区域:z=x^2+y^2(0
-
计算曲面积分ff(xdydz+z平方dxdy)/x2+y2+z2,其中积分区域为曲面x2+y2=a2与平面z=a及z=-
-
∫∫(x^3+z^2)dydz+(y^3+x^2)dzdx+(z^3+y^2)dxdy 积分区域为z=√1-x^2-y^
-
计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,∑是上半球面z=根下1-x^2-y^2的上侧
-
求教一道高数题 计算曲面积分∫∫(yx^2+z)dzdx+(xy^2+y)dydz,其中Σ是z=√(x^2+y^2)与z
-
计算曲面积分∫∫(z^2+x)dydz-zdxdy其中积分面为z=1/2(x^2+y^2)介于z=0,和z=2之间部分下