在平面直角坐标系中xoy中已知点A(6÷5,0),P(cosα,sinα)

1个回答

  • 1.证:向量PA=(6/5-cosa,0-sina)=(6/5-cosa,-sina).

    向量PO=(0-cosa,0-sina)=(-cosa,-sina).

    向量PA.向量PO=(6/5)(-cosa+(-cosa)(-cosa)+(-sina)(-sina).

    =(6/5)(-cosa)+cos^2a+sin^2a.

    =(6/5)(-5/6)+1.【cosa=5/6】

    =-1+1.

    =0.

    ∴向量PA⊥向量PO.

    2.|PA|^2=(6/5-cosa)^2+(-sina)^2.

    =(36/25-(12/5)cosa+cos^2a+sin^2a.

    =(36/25)-(12/5)cosa+1.

    |PO|^2=(-cosa)^2+(-sina)^2.

    =cos^2a+sin^2.

    =1.

    题设|PA|=|PO|,----> |PA|^2=|PO|^2.

    即,(36/25)-(12/5)cosa+1=1.

    cosa=(36/25)*(5/12).

    ∴cosa=3/5.

    sina=√(1-cos^2a)=4/5.

    sin(2a+π/4)=sin2acos(π/4)+cos2asin(π/4).

    =2sinacosa*(√2/2)+cos2a*(√2/2).【cos2a=2cos^2a-1=2*(3/5)^2-1=-7/25】

    =(√2/2)[2*(4/5(*(3/5)-7/25].

    =(√2/2)*(14/25).

    =7√2/25.----即为所求.