请教一道数列题{An}首相为1,且8倍的第n+1项与第n项的乘积减去16倍的第n+1项再加上2倍的第n项再加上5=0(n

1个回答

  • ∵数列{a[n]},8a[n+1]a[n]-16a[n+1]+2a[n]+5=0 (n≥2)

    ∴8a[n+1](a[n]-2)=-(2a[n]+5)

    即:a[n+1]=(2a[n]+5)/(16-8a[n])

    采用不动点法,设:x=(2x+5)/(16-8x)

    8x^2-14x+5=0,即:(4x-5)(2x-1)=0

    ∴x=5/4 或者 x=1/2

    ∴(a[n+1]-5/4)/(a[n+1]-1/2)

    ={(2a[n]+5)/(16-8a[n])-5/4}/{(2a[n]+5)/(16-8a[n])-1/2}

    ={4(2a[n]+5)-5(16-8a[n])}/{4(2a[n]+5)-2(16-8a[n])}

    =(8a[n]+20-80+40a[n])/(8a[n]+20-32+16a[n])

    =(48a[n]-60)/(24a[n]-12)

    =(4a[n]-5)/(2a[n]-1)

    =2(a[n]-5/4)/(a[n]-1/2)

    ∵a[1]=1

    ∴(a[1]-5/4)/(a[1]-1/2)=-1/2

    ∴{(a[n]-5/4)/(a[n]-1/2)}是首项为-1/2,公比为2的等比数列

    即:(a[n]-5/4)/(a[n]-1/2)=(-1/2)2^(n-1)=-2^(n-2)

    a[n]-5/4=-(a[n]-1/2)2^(n-2)

    a[n]+a[n]2^(n-2)=5/4+2^(n-3)

    ∴a[n]=[5/4+2^(n-3)]/[1+2^(n-2)]=[5+2^(n-1)]/(4+2^n)

    ∵b[n]=1/(a[n]-1/2) (n≥2)

    ∴b[n]

    =1/{[5+2^(n-1)]/(4+2^n)-1/2}

    =(4+2^n)/{[5+2^(n-1)]-[2+2^(n-1)]}

    =(4+2^n)/3

    (2)∵a[n]b[n]={[5+2^(n-1)]/(4+2^n)}{(4+2^n)/3}=[5+2^(n-1)]/3

    ∴{a[n]b[n]}的前n项和S[n]

    =a[1]b[1]+a[2]b[2]+...+a[n]b[n]

    =[5+2^0]/3+[5+2^1]/3+...+[5+2^(n-1)]/3

    =(5n+2^n-1)/3