如果题目是连加的话,应该不能用简便方法吧,只有是连乘才能用简便方法:
[1/(x+1)][1/(x^2+1)][4/(x^4+1)][8/(x^8)+1]
解,原式
={[1/(x-1)][1/(x+1)][1/(x^2+1)][4/(x^4+1)][8/(x^8)+1]}(x-1)
=[1/(x^2-1)][1/(x^2+1)][4/(x^4+1)][8/(x^8)+1]}(x-1)
=[1/(x^4-1)][4/(x^4+1)][8/(x^8)+1]}(x-1)
=4/(x^8-1)[8/(x^8)+1]}(x-1)
=32(x-1)/x^16-1
如果您的题目错了,那就是我这样做的.