∵当x≠0时, f ′ (x)+
f(x)
x >0 ,
∴
xf′(x)+f(x)
x >0
要求关于x的方程 f(x)+
1
x =0 的根的个数可转化成xf(x)+1=0的根的个数
令F(x)=xf(x)+1
当x>0时,xf′(x)+f(x)>0即F′(x)>0,∴F(x)在(0,+∞)上单调递增
当x<0时,xf′(x)+f(x)<0即F′(x)<0,∴F(x)在(-∞,0)上单调递减
而y=f(x)为R上的连续可导的函数
∴xf(x)+1=0无实数根
故选A.
∵当x≠0时, f ′ (x)+
f(x)
x >0 ,
∴
xf′(x)+f(x)
x >0
要求关于x的方程 f(x)+
1
x =0 的根的个数可转化成xf(x)+1=0的根的个数
令F(x)=xf(x)+1
当x>0时,xf′(x)+f(x)>0即F′(x)>0,∴F(x)在(0,+∞)上单调递增
当x<0时,xf′(x)+f(x)<0即F′(x)<0,∴F(x)在(-∞,0)上单调递减
而y=f(x)为R上的连续可导的函数
∴xf(x)+1=0无实数根
故选A.