想必你是不知道这个公式吧:sinx+siny=2sin[(x+y)/2]*cos[(x-y)/2]
cosx+cosy=2cos[(x+y)/2]*cos[(x-y)/2]
关于该三角形是Rt三角形的证明如下:
由sinA*cosB-sinB=sinC-sinAcosC得
sinA*(cosB+cosC)=sinB+sinC
sinA*2cos[(B+C)/2]*cos[(B-C)/2]=2sin[(B+C)/2]*cos[(B-C)/2]
sinA*cos[(B+C)/2]=sin[(B+C)/2]
又因为B+C=∏-A,则有
sinA*cos[(∏-A)/2]=sin[(∏-A)/2]
sinA*sin(A/2)=cos(A/2),
2cos(A/2)*[sin(A/2)]^2=cos(A/2)
故得sin(A/2)=(根2)/2,又因为0