x对t求导:x'(t)=e^t+te^t=e^t(t+1)
y对t求导:e^t+e^y *y'(t)=0,得:y'(t)=-e^(t-y)
故y'(x)=y'(t)/x'(t)=-e^(-y)/(t+1)
记A(t)=d(y'(x))/dt=-[-y'(t)e^(-y)(t+1)-e^(-y)]/(t+1)^2=e^(-y)[-e^(t-y)(t+1)+1]/(t+1)^2
t=1时,x(1)=e,y(1)=1,xt'(1)=2e,y'x(1)=-e^(-1)/2,A(1)=-e^(-1)/4
y"(x)=d(dy/dx)/dt /(dx/dt)
y"(1)=A(1)/x'(1)=-e^(-1)/(8e)=-1/(8e^2)
k=|y"|/(1+y'^2)^(3/2)=1/[(8e^2)*(1+e^(-2)/4)^(3/2)]=e(1+4e^2)^(-3/2)
书上的答案是对的.注意在算二阶导数的时候容易出错.