解题思路:(1)连接OP和BP,可证出∠BPD=∠PBD,再由OB=OP得出∠OPB=∠OBP,从而得出∠OPD=90°,从而证出DP是⊙O的切线;
(2)连接OD,在Rt△ABC中,可求得AC,再根据三角形的中位线定理得出OD的长,则求出DP的长.
(1)证明:连接OP和BP,
∵AB是⊙O的直径,BC切⊙O于B,
∴∠APB=90°,AB⊥BC,
∴∠ABC=∠ABP+∠PBC=90°
在Rt△BPC中,D为BC边的中点
∴BD=PD
∴∠BPD=∠PBD
∵OB=OP
∴∠OPB=∠OBP
∴∠OPD=∠OPB+∠BPD=∠OBP+∠PBD=∠ABC=90°
即PD⊥OP
∴DP是⊙O的切线
(2)连接OD
在Rt△ABC中
∵cosA=
3
5,⊙O的半径为5
∴AC=
AB
cosA=
50
3
∵OA=OB,DC=DB
∴OD=[1/2]AC=[25/3],
在Rt△OPD中,PD=
OD2−OP2=
(
25
3)2−52=[20/3].
点评:
本题考点: 切线的判定与性质;圆周角定理;解直角三角形.
考点点评: 本题是一道综合题,考查了切线的判定和性质,圆周角定理和解直角三角形,熟练掌握切线的判定定理和三角函数是解此题的关键.