证明:
∵等边△ADC、等边△CEB
∴AC=CD,BC=CE,∠ACD=∠BCE=60
∴∠DCE=180-∠ACD-∠BCE=60
∴∠DCE=∠ACD
∴∠ACE=∠ACD+∠DCE=120,∠DCB=∠BCE+∠DCE=120
∴∠ACE=∠DCB
∴△ACE≌△DCB (SAS)
∴∠CAE=∠CDB
∴△ACM≌△DCN (ASA)
∴CM=CN
∴等边△CMN
∴∠CMN=60
∴∠CMN=∠ACD
∴MN∥AB
2、过点C作CG⊥AE于G,CH⊥BD于H
∵△ACE≌△DCB
∴AE=BD,S△ACE=S△DCB
∵CG⊥AE,CH⊥BD
∴S△ACE=AE×CG/2,S△DCB=BD×CH/2
∴CG=CH
∴CO平分∠AOB