a(n+1)=(1/2)[(n+1)/n]an,即:[a(n+1)]/[an]=(1/2)[(n+1)/n],则:
a2/a1=(1/2)[2/1]
a3/a2=(1/2)[3/2]
a4/a3=(1/2)[4/3]
……
an/a(n-1)=(1/2)[n/(n-1)]
上述等式相乘,得:
an/a1=n*(1/2)^(n-1),an=(a1)×n×(1/2)^(n-1)
则:an=n*(1/2)^n.数列{an}的前n项和采用错位法求和.Sn=2-(n+2)*(1/2)^(n).
a(n+1)=(1/2)[(n+1)/n]an,即:[a(n+1)]/[an]=(1/2)[(n+1)/n],则:
a2/a1=(1/2)[2/1]
a3/a2=(1/2)[3/2]
a4/a3=(1/2)[4/3]
……
an/a(n-1)=(1/2)[n/(n-1)]
上述等式相乘,得:
an/a1=n*(1/2)^(n-1),an=(a1)×n×(1/2)^(n-1)
则:an=n*(1/2)^n.数列{an}的前n项和采用错位法求和.Sn=2-(n+2)*(1/2)^(n).