1 用导数定义证明:(1)(sinX)'=cosX (2)[f(g(X))]'=f'(x)*g‘(x) 2 求证(lnx
0)α=0)当Δu≠0,用Δu乘等"}}}'>

1个回答

  • 因为y=f(u)在u可导,则lim(Δu->0)Δy/Δu=f'(u)或Δy/Δu=f'(u)+α(lim(Δu->0)α=0)

    当Δu≠0,用Δu乘等式两边得,Δy=f'(u)Δu+αΔu

    但当Δu=0时,Δy=f(u+Δu)-f(u)=0,故上等式还是成立.

    又因为Δx≠0,用Δx除以等式两边,且求Δx->0的极限,得

    dy/dx=lim(Δx->0)Δy/Δx=lim(Δx->0)[f'(u)Δu+αΔu]/Δx=f'(u)lim(Δx->0)Δy/Δx+lim(Δx->0)αΔu/Δx

    又g(x)在x处连续(因为它可导),故当Δx->0时,有Δu=g(x+Δx)-g(x)->0

    则lim(Δx->0)α=0

    最终有dy/dx=(dy/du)*(du/dx)