解题思路:欲求曲线y=f(x)在点(1,f(1))处切线的斜率,即求f′(1),先求出f′(x),然后根据曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1求出g′(1),从而得到f′(x)的解析式,即可求出所求.
f′(x)=g′(x)+2x.
∵y=g(x)在点(1,g(1))处的切线方程为y=2x+1,
∴g′(1)=2,∴f′(1)=g′(1)+2×1=2+2=4,
∴y=f(x)在点(1,f(1))处切线斜率为4.
故选:A.
点评:
本题考点: 利用导数研究曲线上某点切线方程;直线的斜率.
考点点评: 本题主要考查了利用导数研究曲线上某点切线方程,直线的斜率等有关基础知识,考查运算求解能力、推理论证能力,属于基础题.