首先令(x+π/2)=t
等价于d(t) / sin(t)=ln|csc(t)-cot(t)|+C
1/sin(t)=1/[2sin(t/2)cos(t/2)]
=cos(t/2)/[2sin(t/2)cos^2(t/2)] (同时乘以cos(t/2))
=[cos(t/2)/sin(t/2)]*[1/(2*cos^2(t/2)] (变形)
所以[1/sin(t)]*d(t)
=[cos(t/2)/sin(t/2)]*[1/(2*cos^2(t/2)]*d(t)
=[1/tan(t/2)]*[1/(2*cos^2(t/2)]*d(t)
=[1/tan(t/2)]d(tan(t/2))
积分符号下:=|lntan(t/2)|+c
而tan(t/2)=[1-cos(t)]/sin(t)=csc(t)-cot(t)
所以得证,第二个等号用三角公式就行了.