1、令x=tan^2t dx=2tantsec^2tdt
原式=∫2tantsec^2tdt/tantsec^2t
=2∫dt
=2t+C
=2arctan(√x)+C
2、∫dx/(1+cosx)
=∫dx/2cos^2(x/2)
=∫sec^2(x/2)d(x/2)
=tan(x/2)+C
3、∫sinxdx/(1+cosx)
=∫2sin(x/2)cos(x/2)dx/2cos^2(x/2)
=2*∫tan(x/2)d(x/2)
=-2ln|cos(x/2)|+C
1、令x=tan^2t dx=2tantsec^2tdt
原式=∫2tantsec^2tdt/tantsec^2t
=2∫dt
=2t+C
=2arctan(√x)+C
2、∫dx/(1+cosx)
=∫dx/2cos^2(x/2)
=∫sec^2(x/2)d(x/2)
=tan(x/2)+C
3、∫sinxdx/(1+cosx)
=∫2sin(x/2)cos(x/2)dx/2cos^2(x/2)
=2*∫tan(x/2)d(x/2)
=-2ln|cos(x/2)|+C