已知△ABC是边长为1的正三角形,M、N分别是边AB、AC上的点,线段MN经过△ABC的中心G,设角MGA=α(π/3≤

1个回答

  • (Ⅰ)在三角形AGM中,由正弦定理:

    sin∠AMG/AG=sin∠MAG/GM

    其中∠MAG=30°,

    ∠AMG=180°-(30°+α),

    AG=2/3*AD=2/3*sin60°*AB=根号3/3,

    GM=sin∠MAG*AG/sin∠AMG=根号3/6sin(30°+α)

    同理,在三角形AGN中,

    GN=根号3/6sin(a-30°)

    S1=1/2AG·GMsinα=1/2*根号3/3*根号3/6sin(30°+α)*sinα=sinαsin(30°+α)/12

    S2=1/2AG·GNsin(180°-α)=1/2*根号3/3*根号3/6sin(a-30°)*sinα=sinαsin(a-30°)/12

    (Ⅱ)y=1/(S1^2)+ 1/(S2^2)

    =144/[(sinα)^2*sin^2(a-30°)]+144/[(sinα)^2*sin^2(30°+α]

    =72(3+cot^2α)

    ∵π/3