2,5,9,13,19 以此类推 这组数列的通项公式是什么

4个回答

  • 斐波那契数列,这么著名的数列都不知道!用特征方程法加待定系数法!

    解 :设an-αa(n-1)=β(a(n-1)-αa(n-2))

    得α+β=1

    αβ=-1

    构造方程x²-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2

    所以

    an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1

    an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2

    由式1,式2,可得

    an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3

    an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4

    将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}