sin²xcos²x
=(1/4)(2sinxcosx)²
=sin²(2x)/4
=[1-cos(2x)]/8
=1/8 -cos(2x)/8
∫(sin²xcos²x)dx
=∫[1/8 -cos(2x)/8]dx
=x/8 -sin(2x)/16 +C
sin²xcos²x
=(1/4)(2sinxcosx)²
=sin²(2x)/4
=[1-cos(2x)]/8
=1/8 -cos(2x)/8
∫(sin²xcos²x)dx
=∫[1/8 -cos(2x)/8]dx
=x/8 -sin(2x)/16 +C