Δy=sin(x+Δx)-sinx=2cos(x+Δx/2)sin(Δx/2)
Δy/Δx=cos(x+Δx/2)sin(Δx/2)/(Δx/2)
(sinx)‘=lim(Δx-->0)cos(x+Δx/2)sin(Δx/2)/(Δx/2)
=lin(Δx/2-->0)cos(x+Δx/2)sin(Δx/2)/(Δx/2)
=(cosx)*lim(Δx/2-->0sin(Δx/2)/(Δx/2)
=(cosx)*1=cosx
Δy=sin(x+Δx)-sinx=2cos(x+Δx/2)sin(Δx/2)
Δy/Δx=cos(x+Δx/2)sin(Δx/2)/(Δx/2)
(sinx)‘=lim(Δx-->0)cos(x+Δx/2)sin(Δx/2)/(Δx/2)
=lin(Δx/2-->0)cos(x+Δx/2)sin(Δx/2)/(Δx/2)
=(cosx)*lim(Δx/2-->0sin(Δx/2)/(Δx/2)
=(cosx)*1=cosx