解题思路:(1)根据销量=250+10(x-25),列出函数关系式即可;
(2)根据(1)式列出方程,进而求出即可;
(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较.
(1)由题意得,销售量为:y=250-10(x-25)=-10x+500;
(2)由题意可得出:
2000=(x-20)(-10x+500),
整理得出:x2-70x+1200=0,
解得:x1=30,x2=40.
答:销售单价为30元或40元时,该文具每天的销售利润为2000元;
(3)A方案利润高.理由如下:
w=-10x2+700x-10000=-10(x-35)2+2250.
∵-10<0,
∴函数图象开口向下,w有最大值,
当x=35时,wmax=2250,
故当单价为35元时,该文具每天的利润最大;
而A方案中:20<x≤30,
故当x=30时,w有最大值,
此时wA=2000;
B方案中:
−10x+500≥10
x−20≥25,
故x的取值范围为:45≤x≤49,
∵函数w=-10(x-35)2+2250,对称轴为直线x=35,
∴当x=45时,w有最大值,
此时wB=1250,
∵wA>wB,
∴A方案利润更高.
点评:
本题考点: 二次函数的应用.
考点点评: 本题考查了二次函数的应用,难度较大,最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=-[b/2a]时取得.