原式=((1+cosx-sinx)^2+(1-cosx-sinx)^2)/((1-sinx-cosx)(1-sinx+cosx))
=(1+sin^2(x)+cos^2(x)-2sinx+2cosx-2sinxcosx+1+sin^2(x)+cos^2(x)-2sinx-2cosx+2sinxcosx)/((1-sinx)^2-cos^2(x))
=(4-4sinx)/(2sinx(sinx-1))
当x=2kπ+π/2(k为整数)时,原式无意义
当x≠2kπ+π/2(k为整数)时,原式=-2/sinx