因式分解 (27 14:1:58)

1个回答

  • 1)x²+x-(a²-a)

    =x²+x-a²+a

    =(x²-a²)+(x+a)

    =(x+a)(x-a)+(x+a)

    =(x+a)(x-a+1)

    2) x5+x4+x3+x2+x+1

    = (x5+x4)+(x³+x²)+(x+1)

    =x4(x+1)+x²(x+1)+(x+1)

    =(x+1)(x4+x²+1)

    =(x+1)[(x4+2x²+1)-x²]

    =(x+1)[(x²+1)²-x²]

    =(x+1)(x²+x+1)(x²-x+1)

    3)3x2+5xy-2y2+x+9y-4

    因为 3x²+5xy-2y²=(3x-y)(x+2y)

    所以设 3x²+5xy-2y²+x+9y-4=(3x-y+a)(x+2y+b)

    左边=3x²+5xy-2y²+(a+3b)x+(2a-b)y+ab

    所以 a+3b=1,2a-b=9,ab=-4

    解得 a=4,b=-1

    所以 3x²+5xy-2y²+x+9y-4=(3x-y+4)(x+2y-1)

    4)x2(x+1)-y(xy+x)

    =x³+x²-y²x-xy

    =x(x²+x-y²-y)

    =x[(x²-y²)+(x-y)]

    =x[(x+y)(x-y)+(x-y)]

    =x(x-y)(x+y+1)

    5.x2(x-1)2+32(x-x2)+60

    =x²(x-1)²-32x(x-1)+60

    =[x(x-1)]²-32[x(x-1)]+60 【把x(x-1)看做一项】

    =(x²-x-30)(x²-x-2)

    =(x-6)(x+5)(x-2)(x+1)

    6).2(x2+6x+1)2+5(x2+1)(x2+6x+1)+2(x2+1)2

    设 x²+6x+1=a,x²+1=b

    原式=2a²+5ab+2b²

    =(2a+b)(a+2b)

    =(2x²+12x+2+x²+1)( x²+6x+1+2x²+2)

    =(3x²+12x+3)(3x²+6x+3)

    =9(x²+4x+1)(x²+2x+1)

    =9(x²+4x+1)(x+1)²

    7)(x+1)(x+3)(x+5)(x+7)+15

    =[(x+1)(x+7)][(x+3)(x+5)]+15

    =(x²+8x+7)(x²+8x+15)+15

    设 x²+8x+11=a

    原式=(a-4)(a+4)+15

    =a²-1

    =(a+1)(a-1)

    = (x²+8x+12)( x²+8x+10)

    =(x+2)(x+6) (x²+8x+10)

    8.已知1+w+w2=0,求w1980+w1981+------+w2009的值

    w1980+w1981+------+w2009

    =w1980(1+w+w2)+w1083(1+w+w2)+……+w2007(1+w+w2)

    =0+0+……+0

    =0