解题思路:集合A中的元素其实是圆心为坐标原点,半径为2的圆上的任一点坐标,而集合B的元素是以(3,4)为圆心,r为半径的圆上点的坐标,因为r>0,若A∩B中有且仅有一个元素等价与这两圆只有一个公共点即两圆相切,则圆心距等于两个半径相加得到r的值即可.
据题知集合A中的元素是圆心为坐标原点,半径为2的圆上的任一点坐标,
集合B的元素是以(3,4)为圆心,r为半径的圆上任一点的坐标,
因为r>0,若A∩B中有且仅有一个元素,则集合A和集合B只有一个公共元素即两圆有且只有一个交点,则两圆相切,
圆心距d=R+r或d=R-r;
根据勾股定理求出两个圆心的距离为5,一圆半径为2,则r=3或7
故答案为3或7
点评:
本题考点: 集合的包含关系判断及应用.
考点点评: 考查学生运用两圆位置关系的能力,理解集合交集的能力,集合的包含关系的判断即应用能力.