若正实数xyz满足x+y+z=4 xy+yz+zx=5 则x+y的最大值是!

1个回答

  • 设t = x+y.

    ∵ x+y+z = 4,

    ∴z = 4-(x+y) = 4-t.

    又∵xy+yz+zx = 5,

    ∴xy = 5-z(x+y) = 5-zt = 5-(4-t)t = 5-4t+t².

    根据均值不等式, xy ≤ (x+y)²/4 = t²/4,

    于是t²/4 ≥ 5-4t+t², 整理得(3t-10)(t-2) ≤ 0, 故2 ≤ t ≤ 10/3, 也即2 ≤ x+y ≤ 10/3.

    易验证x = y = 5/3, z = 2/3满足条件, 并使得x+y ≤ 10/3成立等号.

    因此x+y的最大值就是10/3.

    注: 解释一下取等条件x = y = 5/3, z = 2/3的来源.

    当t = 10/3时, 不等式t²/4 ≥ 5-4t+t²成立等号,

    这要求均值不等式, xy ≤ (x+y)²/4成立等号, 因此x = y.

    而t = x+y, 故x = y = 5/3. 此外z = 4-t = 2/3.