Sn=2^n-1
=>an=Sn-S(n-1)=2^n-2^(n-1)=2^(n-1)
bn=an+1/an
=2^(n-1)+1/(2^(n-1))
那么有
bn-b(n-1)
=(2^(n-1)-2^(n-2))+(1/2^(n-1)-1/2^(n-2))
=2^(n-2)-1/2^(n-1)
当n>=2时
2^(n-2)>=1
1/2^(n-1)2^(n-1)-1/2^(n-1)>0
=>bn>b(n-1)
因此bn是单调递增的
Sn=2^n-1
=>an=Sn-S(n-1)=2^n-2^(n-1)=2^(n-1)
bn=an+1/an
=2^(n-1)+1/(2^(n-1))
那么有
bn-b(n-1)
=(2^(n-1)-2^(n-2))+(1/2^(n-1)-1/2^(n-2))
=2^(n-2)-1/2^(n-1)
当n>=2时
2^(n-2)>=1
1/2^(n-1)2^(n-1)-1/2^(n-1)>0
=>bn>b(n-1)
因此bn是单调递增的