y=x^2-4x-5/x^2-3x-4值域

2个回答

  • y=x^2-4x-5/x^2-3x-4

    =[(x+1)(x-5)]/[(x+1)(x-4)]

    则[(x+1)(x-4)]不等于0

    则x+1不等于0且x-4不等于0

    x不等于-1且x不等于4

    又y=[(x+1)(x-5)]/[(x+1)(x-4)]

    =(x-5)/(x-4)

    =[(x-4)-1]/(x-4)

    =1-[1/(x-4)]

    由x不等于4,则1/(x-4)不等于0

    则y=1-[1/(x-4)]不等于1

    又x不等于-1 则代入得y不等于6/5

    则值域为{y|y不等于6/5且y不等于1}