【解】去分母并化简,原式等价于
a6(b3+c3)+b6(c3+a3)+c6(a3+b3)≥2a2b2c2(a3+b3+c3)
(1)
由对称性,不妨设a≥b≥c.
因为
2a2b2c2(a3+b3+c3)≤(a4+b4)c4+(b4+c4)a5+(c4+a4)b5
而
a6(b3+c3)+b6(c3+a3)+c6(a3+b3)-(a4+b4)c5-(b4+c4)a5-(c4+a4)b5
=a5b3(a-b)+a5c3(a-c)-b5a3(a-b)+b5c3(b-c)-c5a3(a-c)-c5b3(b-c)
=(a-b)a3b3(a2-b2)+(a-c)a3c3(a2-c2)+(b-c)b3c3(b2-c2)≥0
所以(1)成立.
第2题化为三角函数做