证明:1/(a3+b3+abc)+1/(b3+c3+abc)+1/(c3+a3+abc)≤1/abc

2个回答

  • 【解】去分母并化简,原式等价于

    a6(b3+c3)+b6(c3+a3)+c6(a3+b3)≥2a2b2c2(a3+b3+c3)

    (1)

    由对称性,不妨设a≥b≥c.

    因为

    2a2b2c2(a3+b3+c3)≤(a4+b4)c4+(b4+c4)a5+(c4+a4)b5

    a6(b3+c3)+b6(c3+a3)+c6(a3+b3)-(a4+b4)c5-(b4+c4)a5-(c4+a4)b5

    =a5b3(a-b)+a5c3(a-c)-b5a3(a-b)+b5c3(b-c)-c5a3(a-c)-c5b3(b-c)

    =(a-b)a3b3(a2-b2)+(a-c)a3c3(a2-c2)+(b-c)b3c3(b2-c2)≥0

    所以(1)成立.

    第2题化为三角函数做